The stiffness of a plant cell in response to an applied force is determined not only by the elasticity of the cell wall but also by turgor pressure and cell geometry, which affect the tension of the cell wall. Although stiffness has been investigated using atomic force microscopy (AFM) and Young’s modulus of the cell wall has occasionally been estimated using the contact-stress theory (Hertz theory), the existence of tension has made the study of stiffness more complex. *
An alternative model is a contact model based on elastic shell theory, in which the cell wall is assumed to be a thin, curved surface pushed by turgor pressure. This theory enables one to infer turgor pressure from the apparent stiffness in some cases. In the unified formula from the elastic shell theory, AFM indentation is described as the contributions of cell wall elasticity and turgor pressure, while the estimation of elasticity and pressure remains ambiguous. *
In the article “Elastic shell theory for plant cell wall stiffness reveals contributions of cell wall elasticity and turgor pressure in AFM measurement” Satoru Tsugawa, Yuki Yamasaki, Shota Horiguchi, Tianhao Zhang, Takara Muto, Yosuke Nakaso, Kenshiro Ito, Ryu Takebayashi, Kazunori Okano, Eri Akita, Ryohei Yasukuni, Taku Demura, Tetsuro Mimura, Ken’ichi Kawaguchi and Yoichiroh Hosokawa describe how they used finite element method simulations to verify the formula of the elastic shell theory for onion (Allium cepa) cells and further optimized the formula to analyze the apparent stiffness observed from the AFM measurement based on the elastic shell theory.*
The authors applied the formula and simulations to successfully quantify the turgor pressure and elasticity of a cell in the plane direction using the cell curvature and apparent stiffness measured by atomic force microscopy. They conclude that tension resulting from turgor pressure regulates cell stiffness, which can be modified by a slight adjustment of turgor pressure in the order of 0.1 MPa. This theoretical analysis reveals a path for understanding forces inherent in plant cells. *
NANOSENSORS™ sphere AFM probes SD-Sphere-NCH-S from the NANOSENSORS™ Special Developments List were used for the force-indentation curve measurements described in the article. NANOSENSORS™ tipless AFM cantilevers of the TL-NCH type were used to evaluate the tip radius dependence. *
*Satoru Tsugawa, Yuki Yamasaki, Shota Horiguchi, Tianhao Zhang, Takara Muto, Yosuke Nakaso, Kenshiro Ito, Ryu Takebayashi, Kazunori Okano, Eri Akita, Ryohei Yasukuni, Taku Demura, Tetsuro Mimura, Ken’ichi Kawaguchi and Yoichiroh Hosokawa
Elastic shell theory for plant cell wall stiffness reveals contributions of cell wall elasticity and turgor pressure in AFM measurement
Nature Scientific Reports volume 12, Article number: 13044 (2022)
DOI: https://doi.org/10.1038/s41598-022-16880-2
Please follow this external link to read the full article: https://rdcu.be/cSWFR
Open Access: The article “Elastic shell theory for plant cell wall stiffness reveals contributions of cell wall elasticity and turgor pressure in AFM measurement” by Satoru Tsugawa, Yuki Yamasaki, Shota Horiguchi, Tianhao Zhang, Takara Muto, Yosuke Nakaso, Kenshiro Ito, Ryu Takebayashi, Kazunori Okano, Eri Akita, Ryohei Yasukuni, Taku Demura, Tetsuro Mimura, Ken’ichi Kawaguchi and Yoichiroh Hosokawa is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.