The dielectric permittivity of membranes is important for many fundamental electrophysiological functions like selective transport in ion channels, action potential propagation and energy generation.*
In their article “Nanoscale dipole dynamics of protein membranes studied by broadband dielectric microscopy” George Gramse, Andreas Schönhals and Ferry Kienberger investigate the nearfield dipole mobility of protein membranes in a wide frequency range from 3 kHz to 10 GHz.*
They achieved their results by adding the frequency as a second fundamental dimension to quantitative dielectric microscopy thereby demonstrating the possibilities of broadband dielectric microscopy for the investigation of dynamic processes in cell bioelectricity at the individual molecular level. Furthermore, the technique may also shed light on local dynamic processes in related materials science applications like semiconductor research or nano-electronics.*
All AFM measurements were carried out at 25 °C using a NANOSENSORS Platinum Silicide AFM probe ( PtSi-FM ).
*Georg Gramse, Andreas Schönhals, Ferry Kienberger
Nanoscale dipole dynamics of protein membranes studied by broadband dielectric microscopy
Nanoscale, 2019, 11, 4303-4309
DOI: 10.1039/C8NR05880F
Please follow this external link for the full article: https://pubs.rsc.org/en/content/articlehtml/2019/nr/c8nr05880f
Open Access The article “Nanoscale dipole dynamics of protein membranes studied by broadband dielectric microscopy” by George Gramse, Andreas Schönhals and Ferry Kienberger is licensed under a Creative Commons Attribution 3.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. To view a copy of this license, visit https://creativecommons.org/licenses/by/3.0/