Fluid-induced alteration of rocks and mineral-based materials often starts at confined mineral interfaces where nm-thick water films can persist even at high overburden pressures and at low vapor pressures. These films enable transport of reactants and affect forces acting between mineral surfaces. However, the feedback between the surface forces and reactivity of confined solids is not fully understood.*
In “Nucleation in confinement generates long-range repulsion between rough calcite surfaces» Joanna Dziadkowiec, Bahareh Zareeipolgardani, Dag Kristian Dysthe and Anja Røyne describe how they used the surface forces apparatus (SFA) to follow surface reactivity in confinement and measure nm-range forces between two rough calcite surfaces in NaCl, CaCl2, or MgCl2 solutions with ionic strength of 0.01, 0.1 or 1 M.*
Roughness evolution with time of single, unconfined calcite films in salt solutions was analyzed by Atomic Force Microscopy using NANOSENSORS™ uniqprobe qp-SCONT AFM probes to image the surfaces in contact mode.*
*Joanna Dziadkowiec, Bahareh Zareeipolgardani, Dag Kristian Dysthe and Anja Røyne
Nucleation in confinement generates long-range repulsion between rough calcite surfaces
Nature, Scientific Reports, volume 9, Article number: 8948 (2019)
doi: https://doi.org/10.1038/s41598-019-45163-6
Please follow this external link for the full article: https://rdcu.be/bMhZb
Open Access: The article “Nucleation in confinement generates long-range repulsion between rough calcite surfaces” by Joanna Dziadkowiec, Bahareh Zareeipolgardani, Dag Kristian Dysthe and Anja Røyne is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/