Skip to content

On-chip integration of single solid-state quantum emitters with a SiO2 photonic platform

One important building block for future integrated nanophotonic devices is the scalable on-chip interfacing of single photon emitters and quantum memories with single optical modes.*

In the article “On-chip integration of single solid-state quantum emitters with a SiO2 photonic platform” Florian Böhm, Niko Nikolay, Christoph Pyrlik, Jan Schlegel, Andreas Thies, Andreas Wicht,Günther Tränkle and Oliver Benson present the deterministic integration of a single solid-state qubit, the nitrogen-vacancy (NV) center, with a photonic platform consisting exclusively of SiO2grown thermally on a Si substrate.*
The platform stands out by its ultra-low fluorescence and the ability to produce various passive structures such as high-Q micro resonators and mode-size converters. By numerical analysis an optimal structure for the efficient coupling of a dipole emitter to the guided mode could be determined. Experimentally, the integration of a preselected NV emitter was performed with an atomic force microscope and the on-chip excitation of the quantum emitter as well as the coupling of single photons to the guided mode of the integrated structure could be demonstrated. The authors approach shows the potential of this platform as a robust nanoscale interface of on-chip photonic structures with solid-state qubits.*

After optically verifying the successful placement of the nanodiamond hosting a single nitrogen-vacancy ( NV ) center by performing a confocal scan, the article describes how the nanoparticle is pushed to the inner edge of the rib waveguide in a subsequent step, using a NANOSENSORS™ AdvancedTEC™ ATEC-NC tip-view AFM probe.*


Figure 1 a from: “On-chip integration of single solid-state quantum emitters with aSiO2photonic platform” by Florian Böhm et al:
Waveguide design and functionalization
(a) Illustration of the SiO2waveguide structure and the field profile(E2∣∣)of the guided TM fundamental optical mode at 700 nm. Also the deterministic positioning process of the diamond-nanocrystal containing a single NV center (the NV crystal structure is shown in the inset) into the inner edge of the integrated SiO2rib waveguide with an atomic force microscope (AFM) tip, is shown.

*Florian Böhm, Niko Nikolay, Christoph Pyrlik, Jan Schlegel, Andreas Thies, Andreas Wicht,Günther Tränkle and Oliver Benson
On-chip integration of single solid-state quantum emitters with a SiO2 photonic platform
New Journal of Physics 21 (2019 ) 045007
DOI: https://iopscience.iop.org/article/10.1088/1367-2630/ab1144

Please follow this external link to read the full article: https://iopscience.iop.org/article/10.1088/1367-2630/ab1144/pdf

Open Access: The article “On-chip integration of single solid-state quantum emitters with a SiO2 photonic platform” by Florian Böhm, Niko Nikolay, Christoph Pyrlik, Jan Schlegel, Andreas Thies, Andreas Wicht, Günther Tränkle and Oliver Benson is licensed under a Creative Commons Attribution 3.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0/.