Skip to content

MFM探针

Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure

Figure 2 from “Electric-field-driven non-volatile multi-state switching of individual skyrmions in a multiferroic heterostructure” by Yadong Wang et al.: Electric-field-induced switching of individual skyrmion. The transferred average strain εave and corresponding magnetic domain evolution processes in the d ~ 350 nm a [Pt/Co/Ta]12 and b [Pt/Co/Ta]8 nano-dots in a cycle of E ranging from +10 to −10 kV cm−1. Positive εave (red dots) represents tensile strain while negative εave (blue dots) represents compressive strain. μ0H represents the external magnetic field except that from the MFM tip and here μ0H is equal to be 0 mT. The inset of b illustrates the spin texture of the magnetic domain that is encompassed by the red box. The stripe domain enclosed by the black box shows the initial state of the magnetic domain evolution path. The gray dots represent the corresponding electric field for the MFM images. The MFM contrast represents the MFM tip resonant frequency shift (Δf). The scale bar represents 250 nm. NANOSENSORS™ PPP-LM-MFMR low moment magnetic AFM probes were used

Electrical manipulation of skyrmions attracts considerable attention for its rich physics and promising applications. To date, such a manipulation is realized mainly via spin-polarized current… 

Observing single magnetite nanoparticles with a diameter of 10nm by using NANOSENSORS SSS-MFMR AFM probes

Figure 12 from: A. Krivcov et. al, Understanding electrostatic and magnetic forces in magnetic force microscopy: towards single supermagnetic nanoparticle resolution: Figure 12. (a) topography of copper substrate with single magnetite nanoparticle; (b) phase image in 11 nm lift height with an attraction at the place of the nanoparticle; (c) Cross section of a single magnetite nanoparticle (dotted line in (a)) with 10 nm diameter taken on copper substrate with NANOSENSORS SSS-MFMR AFM probe

In their publication “Understanding electrostatic and magnetic forces in magnetic force microscopy: towards single supermagnetic nanoparticle resolution” Alexander Krivcov, Tanja Junkers and Hildegard Möbius describe…