Skip to content

uniqprobes

Mechanical disassembly of human picobirnavirus like particles indicates that cargo retention is tuned by the RNA-coat protein interaction

Fig. 6 from María J. Rodríguez-Espinosa et al. 2023: Model depicting the RNA cargo retention for each VLP variant. The Δ45-CP VLP structure (A) does not show externalized cargo. The CP VLP structure (B) shows shorter N-terminals compared to the Ht-CP structure (C), which implies less RNA cargo retention compared to the Ht-CP structure. The cartoons in blue, green and pink colors represent coat protein, RNA and N-terminal, respectively. For mechanical fatigue experiments, rectangular AFM cantilevers (NANOSENSORS™, uniqprobe qp-BioAC AFM probes with three different AFM cantilevers per chip) with nominal spring constants of 0.05 and 0.1 N m−1 were used. The AFM cantilevers were calibrated using Sader's method.

The idea of using virus-like particles as nanocarriers for heterologous cargo transport and delivery requires controlling the stability of the container–cargo system.* In particular, the… Read More »Mechanical disassembly of human picobirnavirus like particles indicates that cargo retention is tuned by the RNA-coat protein interaction

Accurate and rapid antibiotic susceptibility testing using a machine learning assisted nanomotion technology platform

Fig. 1 from Alexander Sturm et al. “Accurate and rapid antibiotic susceptibility testing using a machine learning-assisted nanomotion technology platform”: Nanomotion detection and recording platform. a Representation of the components of the nanomotion technology platform. b A representation of the nanomotion measurement setup with the (1) bacteria-loaded cantilever, (2) superluminescent light emitting diode (SLED) = light source, and (3) photodetector. c Schematic illustrating Gram-negative bacteria attached to the cantilever. Prior to attachment, bacteria are dispersed in gelling agarose while the cantilever surface is functionalized using positively charged poly-D-lysine. The gelling agent proved beneficial for an even distribution and stability of the bacterial attachment. d Representative standard 4-h nanomotion recordings with a 2-h medium phase (50% LB medium) followed by a 2-h drug phase with 32 µg/ml CRO for the E. coli reference strains ATCC-25922 (S, susceptible) and BAA-2452 (R, resistant). These recordings form the basis for using nanomotion to conduct AST. This study contains 219 recordings of ATCC-25922 and 225 recordings of BAA-2452 exposed to 32 µg/ml CRO with similar results. Data are available in the source data file. NANOSENSORSTM tipless uniqprobe AFM cantilevers SD-qp-CONT-TL from the NANOSENSORS Special Developments List were used.

Antimicrobial resistance (AMR) has become a significant threat to public health worldwide. * AMR diagnostic strategies such as antibiotic susceptibility testing (AST) help provide clinicians… Read More »Accurate and rapid antibiotic susceptibility testing using a machine learning assisted nanomotion technology platform