PPP-LC-MFMR

Cantilever data:
Property Nominal Value Specified Range
Resonance Frequency [kHz] 75 45 - 115
Force Constant [N/m] 2.8 0.5 - 9.5
Length [µm] 225 215 - 235
Mean Width [µm] 28 20 - 35
Thickness [µm] 3 2 - 4
Order codes and shipping units:
Order Code AFM probes per pack Data sheet
PPP-LC-MFMR-10 10 of all probes
PPP-LC-MFMR-20 20 of all probes
PPP-LC-MFMR-50 50
NANOSENSORS™ Magnetic Force Microscopy MFM Silicon Probes

PointProbe® Plus Magnetic Force Microscopy - Low Coercivity - Reflex Coating

The NANOSENSORS™ PPP-LC-MFMR AFM probe is coated with a soft magnetic thin film enabling the measurement of magnetic domains in soft magnetic samples. Due to the low coercivity of the AFM tip coating the magnetisation of the AFM tip will easily get reoriented by hard magnetic samples.

The soft magnetic coating on the AFM tip has a coercivity of app. 7.5 Oe and a remanence magnetization of app. 225 emu/cm3 (these values were determined on a flat surface).

The SPM probe offers unique features:

  • soft magnetic coating on the tip side (coercivity of app. 7.5 Oe, remanence magnetization of app. 225 emu/cm3)
  • effective magnetic moment 0.75x of standard AFM probes
  • magnetic resolution better than 35 nm
  • guaranteed AFM tip radius of curvature < 30 nm
  • AFM tip height 10 - 15 µm
  • Al coating on detector side of AFM cantilever enhancing the reflectivity of the laser beam by a factor of about 2.5
  • alignment grooves on backside of silicon holder chip
  • precise alignment of the AFM cantilever position (within +/- 2 µm) when used with the Alignment Chip
  • compatible with PointProbe® Plus XY-Alignment Series

As both coatings are almost stress-free the bending of the AFM cantilever due to stress is less than 3.5% of the AFM cantilever length. For enhanced signal strength the magnetization of the AFM tip by means of a strong permanent magnet prior to the measurement is recommended.

This AFM probe features alignment grooves on the back side of the holder chip. These grooves fit to the NANOSENSORS Alignment Chip.


Liang Hu, Bingzhang Yang, Zhipeng Hou, Yangfan Lu, Weitao Su and Lingwei Li
Unlocking the charge doping effect in softly intercalated ultrathin ferromagnetic superlattice
eScience, Volume 3, Issue 3, June 2023, 100117
DOI: https://doi.org/10.1016/j.esci.2023.100117


Marco S. A. Medeiros, Indrani Coondoo, Filipe J. S. Oliveira, Andrei L. Kholkin, João S. Amaral, Robert C.Pullara
Synthesis and characterisation of lead free BaFe12O19 –(K0.5Na0.5)NbO3 magnetoelectric composites, and the comparison of various synthetic routes
Journal of Alloys and Compounds, Volume 883, 25 November 2021, 160819
https://doi.org/10.1016/j.jallcom.2021.160819


Yi Cao, Bo Wu, Yin-Lian Zhu, Yu-Jia Wang, Yun-Long Tang, Nan Liu, Jia-Qi Liu, Xiu-Liang Ma
Self-assembled three-dimensional framework of PbTiO3:ε-Fe2O3 nanostructures with room temperature multiferroism
Applied Surface Science, Volume 544, 1 April 2021, 148945
DOI: https://doi.org/10.1016/j.apsusc.2021.148945


Liang Hu, Jian Zhou, Zhipeng Hou, Weitao Su, Bingzhang Yang,  Lingwei Li and  Mi Yan
Polymer-buried van der Waals magnets for promising wearable room-temperature spintronics
Materials Horizons, 2021,8, 3306-3314
DOI: https://doi.org/10.1039/D1MH01439K


Atsufumi Hirohata, Marjan Samiepour & Marco Corbetta
Magnetic Force Microscopy for Magnetic Recording and Devices
In: Celano, U. (eds) 2019, Electrical Atomic Force Microscopy for Nanoelectronics pp 231–26
Part of the NanoScience and Technology book series (NANO)
DOI: https://doi.org/10.1007/978-3-030-15612-1_8


Y. H. Jang and J. H. Cho
Morphology-dependent multi-step ferromagnetic reversal processes in Co thin films on crescent-shaped antidot arrays
Journal of Applied Physics 115, 063903 (2014)
DOI: https://doi.org/10.1063/1.4864314


Jana Wotschadlo, Tim Liebert, Joachim H. Clement, Nils Anspach, Stephanie Höppener, Tobias Rudolph, Robert Müller, Felix H. Schacher, Ulrich S. Schubert and Thomas Heinze
Biocompatible Multishell Architecture for Iron Oxide Nanoparticles
Macro Molecular Bioscience, Volume 13, Issue 1, January 2013, Pages 93-105
DOI: https://doi.org/10.1002/mabi.201200243
https://www.researchgate.net/profile/Thomas-Heinze-6/publication/234015144_Biocompatible_Multishell_Architecture_for_Iron_Oxide_Nanoparticles_JWotschadlo_2012/links/0912f50e45305242b5000000/Biocompatible-Multishell-Architecture-for-Iron-Oxide-Nanoparticles-JWotschadlo-2012.pdf